A new virtual reality simulator-including sophisticated 3-D graphics and tactile feedback-provides neurosurgery trainees with valuable opportunities to practice essential skills and techniques for brain cancer surgery, according to a paper in the September issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams Wilkins, a part ofWolters Kluwer Health.
The prototype system, called ?NeuroTouch,? uses 3-D graphics and haptic (sense of touch) technology to provide a realistic look and feel for practice in performing common tasks in brain cancer surgery. Lead author S-bastien Delorme, PhD, of the National Research Council Canada and colleagues believe the NeuroTouch system could enhance ?acquisition and assessment of technical skills? for neurosurgeons in training.
System Simulates Common Neurosurgery Tasks and Tools
The NeuroTouch system was developed by a team of more than 50 experts from the National Research Council Canada, with input from surgeons at more than 20 Canadian teaching hospitals. The goal was to design a simulation system to provide neurosurgical trainees with opportunities to practice basic surgical skills.
The NeuroTouch software produces 3-D graphics, simulating what the neurosurgeon sees through the operating microscope during surgery-including detailed, lifelike renderings of brain tissue, blood vessels, and tumors. The system also includes haptic tool manipulators, providing tactile feedback similar to what the surgeon would feel during surgery. The simulator runs on computers that, while powerful, are similar to those used to run popular games.
The researchers designed training tasks to simulate common neurosurgery procedures using the NeuroTouch. In one task, the surgeon is to remove brain tumor while leaving normal tissues intact, using two different suction devices. In this simulation, the system provides touch and visual cues to discriminate between healthy tissue and brain tumor.
In the other task, the surgeon must remove a vascularized (supplied with blood) tumor while controlling blood loss. The blood vessels and tissues look realistic, including normal pulsations. The vessels bleed when the surgeon applies a cutting tool and stop bleeding when he or she uses a simulated cautery tool.
Both tasks were developed using 3D reconstructions of magnetic resonance imaging scan data from actual patients. With further development, the system may be used not only to practice basic procedures, but even to allow neurosurgeons to simulate and practice actual operations, based on the patient?s own MRI scan.
Article source: http://www.news-medical.net/news/20120924/NeuroTouch-system-provides-3-d-graphics-and-tactile-feedback-during-brain-cancer-surgery.aspx
donovan mcnabb lottery ticket megga millions what is autism the giver march 30 rimm
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.